

Environment Center Charles University in Prague

Economic Rationale for Regulation: Environmental externalities, abatement costs and market-based instruments

Vojtěch Máca, Jan Melichar & Milan Ščasný Charles University in Prague Environment Center Czech Republic

Modelling impacts of environmental regulation, Prague, 23-11-2009

Presentation outline

- energy sector
- theoretical fundamentals of optimal environmental taxation
- quantification of external costs
- abatement costs
- internalisation using market-based instruments

Drivers and challenges

Energy sector under continuous influence from EU

- opening of energy market
- vertical dis-bundling (generation, transmission, distribution)
- harmonised taxation of energy
- emission trading scheme
- promotion of renewable energy sources
- security of energy supply

Gross Electricity Production 1998-2007

Optimal environmental taxation theory

- externalities renders ineffective the market price mechanism that otherwise secures socially optimal (Pareto efficient) resource allocation
- presence of the externality could be avoided by making its external effect 'internal' → (voluntary) internalisation through
 - private negotiation
 - creation of market (Coase)
- <u>but</u> transaction costs matter

Optimal environmental taxation theory (2)

- regulation of market by introducing taxes (subsidies)
 - optimization at the point where reduction of additional
 damage equals to additional increase in abatement costs
 - Pigouvian tax (subsidy) tax rate equals to marginal external costs
 - but this holds only in first best setting with no need for tax revenues (→ Ramsey's inverse elasticity rule)
 - Sandmo optimal pollution tax consist of revenue-raising part (Ramsey) and externality correcting part (Pigou) weighted by marginal cost of public funds

Methodology for calculation of external costs

Input data

technology data	emissions	other
Flue gas parameters	SO ₂ , NO _x , PM10, PM2.5, NH ₃ , NMVOC	Land-use change
Location	Cd, As, Cr, Ni, Hg, Pb, Cr-VI, CH ₂ O, dioxins	
Building properties	CO ₂ , CH ₄ , N ₂ O	
	radio-nuclides	

Output data

- Concentration levels of primary and secondary particles
 and ozone
- Receptor exposure (i.e. population, crops, building materials)
- Physical impacts resulting from exposure to airborne
 pollutants
- (Damage) costs due to impacts on human health, crops, building materials, ecosystems and due to climate change

Technologies assessed

facility	fuel	instal. capacity (MWel)	electricity production (GWh/a)
Dětmarovice	coal/lignite	800	2 502
Hodonín	lignite/biomass	105	303
Tušimice II	lignite	800	4 758
Červený Mlýn	natural gas	95	242
Vřesová - PPC	energo gas/NG	370	1 781
Teplárna Liberec	HFO/NG	12	30
Trhové Sviny	biomass	0,6	1,063
Vodňany	biogas	0,142	0,8207

Marginal external costs (in €c/kWh)

→ range of external costs between 1.08 and 10.8 €c/kWh

External cost estimates (3)

- highest for lignite fired power plants
- lowest for natural gas fired power plants
- costs mainly driven by climate change impacts and human health effects (esp. mortality)
- substantial uncertainties
 - climate impacts estimates based on abatement costs (vs. damage costs)
 - health impacts mortality valuation (value statistical life vs. life year lost)

Abatement costs

- emission control costs computed by the GAINS model (Greenhouse Gas and Air Pollution Interactions and Synergies)
- integrated assessment model dealing with costs and potentials for air pollution control and greenhouse gas mitigation
- emission inventories, emission projections and control costs for SO₂, NO_x, VOC, PM, NH₃, GHG
- developed by IIASA (the International Institute for Applied Systems Analysis)
- web: <u>http://gains.iiasa.ac.at/index.php/gains-europe</u>

Abatement costs (2)

- Marginal abatement cost curve for SO₂, NO_x and PM_{2.5}
- expenditures on emission controls are differentiated to:
 - Investment costs (annualized over the technical lifetime of the plant, we used interest rate 4%)
 - Fixed operating costs (maintenance and administrative overhead),
 - Variable operating costs (additional labour demand, increased energy demand, sorbent material demand, by-products/waste disposal)
- emission control costs for "National projections 2006" (scenario based on revision of the NEC directive for 2020)
- reduction objectives for 2020:
 - SO₂ by 77% compared to 2000, NO_X by 58%, PM_{2.5} by 46%

Abatement costs – SO₂

SO₂ emissions (kilo-tonnes)

Abatement costs – SO₂

at ~10,000€ /t damage equals to additional increase in abatement costs

SO₂ emissions (kilo-tonnes)

Abatement costs – NO_x

NO_x emissions (kilo-tonnes)

Abatement costs – PM_{2.5}

PM emissions (kilo-tonnes)

Internalisation

 comparison between external costs and environmental taxes and charges (or subsidies) levied upon emissions from electricity generation (or upon electricity consumption)

Internalisation (2)

- emission charges set for a number of pollutants emitted to the atmosphere from stationary sources
- reduced rates when abatement technology installation commenced

Air pollution charges	pollutant	CZK/tonne	EUR/tonne
	particulates	3 000	120
	SO2	1 000	40
	NOx	800	32
	NMVOC	2 000	80
	heavy metals	20 000	801
	СО	600	24
	NH3	1 000	40
	CH4	1 000	40
	PAHs	20 000	801

Charge vs. abatement

at ~10,000€ /t damage equals to additional increase in abatement costs

SO₂ emissions (kilo-tonnes)

Internalisation (3)

energy taxation

- minimum rates from Energy Taxation Directive
- electricity taxed as output, energy products used for electricity generation are exempted
- exemption for electricity produced from RES
- single rate of 28.3 CZK/MWh (1.028 EUR)

renewable energy promotion

- top-up for promotion of RES & CHP charged by distributors
- 1.63 EUR/MWh

Internalisation (4)

External costs and their internalisation

Internalisation (5)

- highest internalisation for energo-gas/NG generators but still below 25%
- relatively low internalisation for RES due to electricity tax exemption
- → combined effect of lower unit external costs and flat rates (i.e. per kWh) of electricity tax and RES-E support charge

Concluding remarks

- level of internalization is generally low
 - current taxes and charges have too low rates → do not reap dynamic efficiency potential
 - no indexing of rates in time
 - lack of political will for increase in tax/charge (mainly due to competitiveness concerns)
- outdated technologies
 - gradual replacement will improve the situation
- fuel-mix composition
 - trade-off between domestic (dirty) resources and security of supply (natural gas)

Thank you for your attention!

Contact:

vojtech.maca@czp.cuni.cz http://www.czp.cuni.cz

Acknowledgement - project Modelling of Environmental Tax Reform Impacts: Second Phase, funded Ministry of Environment of the Czech Republic